نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مدیریت، دانشکده علوم انسانی، دانشگاه حضرت معصومه (س)، قم، ایران.

2 دانشیار دانشکده مدیریت و حسابداری، دانشکدگان فارابی، دانشگاه تهران، قم، ایران. (نویسنده مسئول).

3 کارشناس ارشد مدیریت فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشکدگان فارابی، دانشگاه تهران، قم، ایران.

4 دانشجوی دکترای مدیریت بازرگانی، گروه مدیریت، دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان، سمنان، ایران.

10.22034/jiscm.2022.327820.1347

چکیده

هر چند با افزایش استفاده از رسانه­های اجتماعی، تأثیر محتوای کاربرساخته بر روی تصمیم­گیری مشتریان افزایش یافته، تاکنون پژوهش جامعی که به ارزیابی کیفیت محتوای کاربرساخته در رسانه‌های اجتماعی بپردازد، انجام نشده است. با توجه به این مسئله، هدف این پژوهش، ارائۀ چهارچوب ارزیابی کیفیت محتوای کاربرساخته در رسانه‌های اجتماعی است. در مرحلۀ اول پژوهش، ابعاد و شاخص‌های کیفیت محتوای کاربرساخته از روش کیفی فراترکیب، شناسایی و استخراج شده است. جامعۀ آماری شامل مجموعه‌مقالات حوزه‌های مرتبط است که با بررسی کتابخانه‌ای از طریق اینترنت گردآوری شده­اند. در مرحلۀ دوم، از روش آنتروپی شانون برای اولویت‌بندی ابعاد و شاخص‌های استخراج­شده براساس فراوانی کدهای به‌دست آمده استفاده شده است. براساس نتایج حاصل‌شده از روش فراترکیب، 6 مقولۀ اصلی، 13 بُعد و همچنین 207 شاخص به عنوان چهارچوب نهایی ارائه شده که شامل این موارد هستند: مقولۀ محتوا (شامل ابعاد متنی و صوتی- تصویری)، مقولۀ اعتبار (شامل ابعاد اعتباردهی کاربران و اعتبار منبع اطلاعات)، مقولۀ ارائه (شامل ابعاد ساختار و فرم)، مقولۀ یکپارچگی (شامل ابعاد صحت و امنیت)، مقولۀ زمینه (شامل ابعاد زمان و جمعیت­شناختی) و مقولۀ عملکرد (شامل ابعاد سودمندی، شناختی و اجتماعی- احساسی). این پژوهش با ارائۀ طیفی وسیع از مجموعه‌عوامل تأثیرگذار بر کیفیت محتوا در رسانه­های اجتماعی، درصدد آگاهی­بخشی به مدیران و شاغلان فعال در بستر تجارت الکترونیک بوده تا با آشنا کردن آنها با نحوۀ ایجاد محتوای تأثیرگذار، آنان را از مزایای فناوری جدید تجارت اجتماعی برخوردار کند.

کلیدواژه‌ها

عنوان مقاله [English]

Providing a Framework for Evaluating the Quality of User-generated Content in Social Media

نویسندگان [English]

  • Mona Jami Pour 1
  • Seyyed Mohammadbagher Jafari 2
  • Mahmoud Rashidi Rad 3
  • Ghazaleh Taheri 4

1 Associate Professor, Faculty of Humanities, Management Department, Hazrat-e Masoumeh University (HMU), Qom, Iran.

2 Associate Professor, Faculty of Management and Accounting, College of Farabi, University of Tehran, Qom, Iran. (Corresponding Author).

3 M.A. in Information Technology Management, Faculty of Management and Accounting, College of Farabi, University of Tehran, Qom, Iran.

4 Ph.D. student in Business Management, Business Department, Semnan University, Semnan, Iran.

چکیده [English]

Although with the increasing use of social media, the impact of user-generated content on customer decision-making has increased, no comprehensive research has been done to evaluate the quality of user-generated content on social media so far. Therefore, the purpose of this study is to provide a framework for evaluating the quality of user-generated content on social media. In the first stage of the research, the dimensions and indicators of the quality of user-generated content have been identified and extracted using the meta-synthesis method. The statistical population includes a collection of articles in the related fields collected by a library survey through the Internet. In the second stage, Shannon’s entropy-based approach has been used to prioritize the dimensions and indices extracted, based on the frequency of the obtained codes. According to the results from meta-synthesis, six main categories, 13 dimensions and 207 indicators have been presented as the final framework, which include the following: “content” (including textual and audio-visual dimensions), “validity” (including user credentials and information source credentials), “presentation” (including structure and form dimensions), “integrity” (including accuracy and security dimensions), “background” (including time and demographic dimensions) and “performance” (including usefulness, cognitive and socio-emotional dimensions). This study tries to inform managers and those active in the field of e-commerce, of how to create effective content so that it can benefit them from the new technology of social commerce.

کلیدواژه‌ها [English]

  • Social Media
  • Information Quality
  • Quality of User-generated Content
  • User-generated Content
آذر، ع (1380). «بسط و توسعۀ روش آنتروپی شانون برای پردازش داده‌ها در تحلیل محتوی». علوم انسانی الزهرا، 11(37-38)، 1-18.
فلاح، محمدرضا؛ جامی‌پور، مونا؛ و طاهری، غزاله (1396). «طراحی چهارچوبی برای پیاده‌سازی تجارت اجتماعی: با تأکید بر ظرفیت تغییر سازمانی». مجلۀ مدیریت بازرگانی، 9(4)، 855-876.
 
 
Aagaard, H., & Hall, E. O. (2008). Mothers' experiences of having a preterm infant in the neonatal care unit: a meta-synthesis. Journal of pediatric nursing, 23(3), e26-e36.
Agarwal, N., & Yiliyasi, Y. (2010). Information quality challenges in social media. Paper presented at the ICIQ.
AlMansour, A. A., Brankovic, L., & Iliopoulos, C. S. (2014). A model for recalibrating credibility in different contexts and languages-a twitter case study. International Journal of Digital Information and Wireless Communications (IJDIWC), 4(1), 53-62.‏
Al Qundus, J., Paschke, A., Kumar, S., & Gupta, S. (2019). Calculating trust in domain analysis: Theoretical trust model. International Journal of Information Management, 48, 1-11.‏
Amin, N. A. H. N., Hasnan, A. S., Besar, N. N., & Almunawar, M. N. (2016). Knowledge Sharing Using Web 2.0: Preferences, Benefits and Barriers in Brunei Darussalam's Tertiary Education. International Journal of Asian Business and Information Management (IJABIM), 7(4), 1-18.‏
Anderka, M., Stein, B., & Lipka, N. (2012, August). Predicting quality flaws in user-generated content: the case of wikipedia. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval (pp. 981-990).‏
Aydin, M. A., & Akyol, H. (2020). Quality of information available on YouTube videos pertaining to thyroid cancer. Journal of Cancer Education, 35(3), 599-605.‏
Bateman, G., Haleem, H. A., & Majumdar, A. (2021). Is user-generated social media content useful for informing planning and management of emergency events?–An investigation of an active shooting event in a US Airport. Case studies on transport policy, 9(3), 1015-1025.‏
Berhanu, K., & Raj, S. (2020). The trustworthiness of travel and tourism information sources of social media: perspectives of international tourists visiting Ethiopia. Heliyon, 6(3), e03439.‏
Biggs, T. C., Bird, J. H., Harries, P. G., & Salib, R. J. (2013). YouTube as a source of information on rhinosinusitis: the good, the bad and the ugly. The Journal of Laryngology & Otology, 127(8), 749-754.‏
Blooma, M. J., Goh, D. H. L., & Chua, A. Y. K. (2012). Predictors of high‐quality answers. Online Information Review.‏
Boerman, S. C., Willemsen, L. M., & Van Der Aa, E. P. (2017). “This post is sponsored”: Effects of sponsorship disclosure on persuasion knowledge and electronic word of mouth in the context of Facebook. Journal of Interactive Marketing, 38, 82-92.‏
Capatina, A., Kachour, M., Lichy, J., Micu, A., Micu, A. E., & Codignola, F. (2020). Matching the future capabilities of an artificial intelligence-based software for social media marketing with potential users’ expectations. Technological Forecasting and Social Change, 151, 119794.‏
Chai, K., Potdar, V., & Dillon, T. (2009, June). Content quality assessment related frameworks for social media. In International Conference on Computational Science and Its Applications (pp. 791-805). Springer, Berlin, Heidelberg.‏
Chai, K., Wu, C., Potdar, V., & Hayati, P. (2011, December). Automatically measuring the quality of user generated content in forums. In Australasian Joint Conference on Artificial Intelligence (pp. 51-60). Springer, Berlin, Heidelberg.
Chen, Y. (2020). An investigation of the influencing factors of Chinese WeChat users’ environmental information-sharing behavior based on an integrated model of UGT, NAM, and TPB. Sustainability, 12(7), 2710.‏
Cheng, R., & Vassileva, J. (2005, January). User motivation and persuasion strategy for peer-to-peer communities. In Proceedings of the 38th annual Hawaii international conference on system sciences (pp. 193a-193a). IEEE.‏
Chua, A. Y., & Banerjee, S. (2013). So fast so good: An analysis of answer quality and answer speed in community Q uestion‐answering sites. Journal of the American Society for Information Science and Technology, 64(10), 2058-2068.‏
Chuenchom, S. (2011). User-centered Evaluation of the Quality of Blogs (Doctoral dissertation, University of North Texas).
Confente, I., Siciliano, G. G., Gaudenzi, B., & Eickhoff, M. (2019). Effects of data breaches from user-generated content: A corporate reputation analysis. European Management Journal, 37(4), 492-504.‏
Dabbous, A., & Barakat, K. A. (2020). Bridging the online offline gap: Assessing the impact of brands’ social network content quality on brand awareness and purchase intention. Journal of Retailing and Consumer Services, 53, 101966.‏
Dalip, D. H., Gonçalves, M. A., Cristo, M., & Calado, P. (2017). A general multiview framework for assessing the quality of collaboratively created content on web 2.0. Journal of the Association for Information Science and Technology, 68(2), 286-308.‏
Dong, R., Schaal, M., O’Mahony, M. P., McCarthy, K., & Smyth, B. (2012, September). Harnessing the experience web to support user-generated product reviews. In International Conference on Case-Based Reasoning (pp. 62-76). Springer, Berlin, Heidelberg.‏
Dufty, D., Bérard, H., Lefranc, S., & Signore, M. (2014). A suggested framework for the quality of big data. UNECE big data quality task team.‏
Emamjome, F., Rabaa'i, A., Gable, G., & Bandara, W. (2013). Information quality in social media: a conceptual model. In Proceedings of the 17th Pacific Asia Conference on Information Systems (PACIS) (pp. 1-12). Association for Information Systems (AIS).‏
Fichman, P. (2011). A comparative assessment of answer quality on four question answering sites. Journal of Information Science, 37(5), 476-486.‏
Fichman, P. (2014). Information quality on yahoo! answers. In Approaches and Processes for Managing the Economics of Information Systems (pp. 295-307).
Fu, H., & Oh, S. (2019). Quality assessment of answers with user-identified criteria and data-driven features in social Q&A. Information Processing & Management, 56(1), 14-28.‏
Ge, M., Helfert, M., & Jannach, D. (2011). Information quality assessment: Validating measurement dimensions and processes.‏
Ho-Dac, N. N. (2020). The value of online user generated content in product development. Journal of Business Research, 112, 136-146.‏
Jabr, W., & Zheng, Z. (2014). Know Yourself and Know Your Enemy. Mis Quarterly, 38(3), 635-A10.‏
Jain, A., & Soni, S. (2019). Multi-Directional navigation method for optimized consumption of user generated content through semantic mapping of features derived from the user generated content. ACM SIGSOFT Software Engineering Notes, 43(4), 52-52.‏
Kim, S. (2010). Questioners' credibility judgments of answers in a social question and answer site. Information Research, 15(2), 15-2.‏
Kim, C., Jin, M. H., Kim, J., & Shin, N. (2012). User perception of the quality, value, and utility of user-generated content. Journal of Electronic Commerce Research, 13(4), 305.‏
Kim, Y. J., Moon, Y. J., & Kang, S. (2015). A Model for Evaluating Quality of User-Generated-Contents Service Sites in Social Media Context. International Information Institute (Tokyo). Information, 18(8), 3467.‏
Kim, S., Oh, J. S., & Oh, S. (2007). Best‐answer selection criteria in a social Q&A site from the user‐oriented relevance perspective. Proceedings of the American Society for Information Science and Technology, 44(1), 1-15.‏
Kim, S., & Oh, S. (2009). Users' relevance criteria for evaluating answers in a social Q&A site. Journal of the American society for information science and technology, 60(4), 716-727.‏
Knight, S. A., & Burn, J. (2005). Developing a framework for assessing information quality on the World Wide Web. Informing Science, 8.‏
Le, L. T., Shah, C., & Choi, E. (2016). Evaluating the quality of educational answers in community question-answering. Paper presented at the 2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL).
Lederman, R., Fan, H., Smith, S., & Chang, S. (2014). Who can you trust? Credibility assessment in online health forums. Health Policy and Technology, 3(1), 13-25.‏
Li, L., Lin, X., Zhai, Y., Yuan, C., Zhou, Y., & Qi, J. (2016). User communities and contents co‐ranking for user‐generated content quality evaluation in social networks. International Journal of Communication Systems, 29(14), 2147-2168.
Li, L., Zhang, L., Wang, A., & Huang, K. (2020, August). Investigating Factors for Assessing the Quality of Academic User-Generated Content on Social Media. In Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (pp. 511-512).‏
Ling, S., Baveye, Y., Le Callet, P., Skinner, J., & Katsavounidis, I. (2020, July). Towards perceptually-optimized compression of user generated content (ugc): Prediction of ugc rate-distortion category. In 2020 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE.‏
Lukyanenko, R. (2021). Expecting the unexpected: Effects of data collection design choices on the quality of crowdsourced user-generated content. Available at SSRN 3948656.
Maddah, M., Lukyanenko, R., VanderMeer, D., & Samuel, B. (2020, January). Data Collection Interfaces in Online Communities: The Impact of Data Structuredness and Nature of Shared Content on Perceived Information Quality. In Proceedings of the 53rd Hawaii International Conference on System Sciences.‏
Magalhães, L. F. G., Goncalves, M. A., Canuto, S. D., Dalip, D. H., Cristo, M., & Calado, P. (2019). Quality assessment of collaboratively-created web content with no manual intervention based on soft multi-view generation. Expert Systems with Applications, 132, 226-238.‏
Mayrhofer, M., Matthes, J., Einwiller, S., & Naderer, B. (2020). User generated content presenting brands on social media increases young adults’ purchase intention. International Journal of Advertising, 39(1), 166-186.‏
Momeni, E., Cardie, C., & Diakopoulos, N. (2015). A survey on assessment and ranking methodologies for user-generated content on the web. ACM Computing Surveys (CSUR), 48(3), 1-49.‏
Musto, J., & Dahanayake, A. (2022). Quality characteristics for user-generated content. In Information Modelling and Knowledge Bases XXXIII (pp. 244-263).
Naab, T. K., & Sehl, A. (2017). Studies of user-generated content: A systematic review. Journalism, 18(10), 1256-1273.‏
Nandi, D., Chang, S., & Balbo, S. (2009). A conceptual framework for assessing interaction quality in online discussion forums. Same places, different spaces. Proceedings ascilite Auckland, 7-23.‏
Noman, A. S. M., Das, S., & Patil, S. (2019, May). Techies against Facebook: Understanding Negative Sentiment toward Facebook via User Generated Content. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-15).‏
Osman, A., Salim, N., & Saeed, F. (2019). Quality dimensions features for identifying high-quality user replies in text forum threads using classification methods. PloS one, 14(5), e0215516.‏
Rieh, S. Y. (2014). Credibility assessment of online information in context.‏
Rodríguez-Hidalgo, C., Rivera-Rogel, D., & Romero-Rodríguez, L. M. (2020). Information quality in Latin American digital native media: Analysis based on structured dimensions and indicators. Media and Communication, 8(2), 135-145.‏
Sandelowski, M., & Barroso, J. (2006). Handbook for synthesizing qualitative research. springer publishing company.‏
Sanguinetti, M., Cassidy, L., Bosco, C., Çetinoğlu, Ö., Cignarella, A. T., Lynn, T., ... & Zeldes, A. (2020). Treebanking user-generated content: a UD based overview of guidelines, corpora and unified recommendations. arXiv preprint arXiv:2011.02063.‏
Sciascio, C. D., Strohmaier, D., Errecalde, M., & Veas, E. (2019). Interactive Quality Analytics of User-generated Content: An Integrated Toolkit for the Case of Wikipedia. ACM Transactions on Interactive Intelligent Systems (TiiS), 9(2-3), 1-42.‏
Shah, C., & Pomerantz, J. (2010, July). Evaluating and predicting answer quality in community QA. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 411-418).‏
Sharma, S., Menard, P., & Mutchler, L. A. (2019). Who to trust? Applying trust to social commerce. Journal of Computer Information Systems, 59(1), 32-42.‏
Sizo, A., Lino, A., Reis, L. P., & Rocha, Á. (2019). An overview of assessing the quality of peer review reports of scientific articles. International Journal of Information Management, 46, 286-293.‏
Sun, X., Zhao, Y. C., & Zhu, Q. (2015). Developing the Measurement Scale of Information Quality for Social Q&A Sites. Paper presented at the PACIS.
Statista. (2020). Global digital population as of January.  Retrieved from https://www.statista.com/statistics/617136/digital-population-worldwide/
Susarla, A., Oh, J. H., & Tan, Y. (2012). Social networks and the diffusion of user-generated content: Evidence from YouTube. Information systems research, 23(1), 23-41.‏
Taylor, S. H., Zhao, P., & Bazarova, N. N. (2021). Social Media and Close Relationships: A Puzzle of Connection and Disconnection. Current Opinion in Psychology.‏
Timoshenko, A., & Hauser, J. R. (2019). Identifying customer needs from user-generated content. Marketing Science, 38(1), 1-20.‏
Tu, Z., Wang, Y., Birkbeck, N., Adsumilli, B., & Bovik, A. C. (2021). UGC-VQA: Benchmarking blind video quality assessment for user generated content. IEEE Transactions on Image Processing, 30, 4449-4464.‏
Ukpabi, D. C., & Karjaluoto, H. (2018). What drives travelers' adoption of user-generated content? A literature review. Tourism management perspectives, 28, 251-273.‏
Xu, Z., Dang, Y., & Wang, Q. (2022). Potential buyer identification and purchase likelihood quantification by mining user-generated content on social media. Expert Systems with Applications, 187, 115899.‏
Yaari, E., Baruchson-Arbib, S., & Bar-Ilan, J. (2011). Information quality assessment of community generated content: A user study of Wikipedia. Journal of Information Science, 37(5), 487-498.‏
Yi, C., Jiang, Z., Li, X., & Lu, X. (2019). Leveraging user-generated content for product promotion: the effects of firm-highlighted reviews. Information Systems Research, 30(3), 711-725.‏
Yu, X., Tu, Z., Ying, Z., Bovik, A. C., Birkbeck, N., Wang, Y., & Adsumilli, B. (2022). Subjective Quality Assessment of User-Generated Content Gaming Videos. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 74-83).
Zanfardini, M., Bigné, E., Andreu, L., & Ruiz, C. (2018, July). Consistency of perceived influence of user-generated content on corporate social responsibility. In 2018 Global Marketing Conference at Tokyo (pp. 1164-1165).‏
Zhang, H., & Xiao, J. (2020). Quality assessment framework for open government data: Meta-synthesis of qualitative research, 2009-2019. The Electronic Library.‏
Zhu, Z., Bernhard, D., & Gurevych, I. (2009). A multi-dimensional model for assessing the quality of answers in social Q&A sites (Doctoral dissertation).‏